Действие элиситорных препаратов обусловлено наличием в их составе особых биологически активных веществ. По современным представлениям сигнальные вещества или элиситоры – это биологически активные соединения различной природы, которые в очень низких дозировках, измеряемых мили-, микро-, а в отдельных случаях – и нанограммами, вызывают каскады различных ответных реакции растений на генетическом, биохимическом и физиологическом уровнях. Воздействие их на фитопатогенные организмы осуществляется посредством влияния на генетический аппарат клеток и изменения физиологии самого растения, придания ему большей жизнестойкости, сопротивляемости различным негативным факторам среды.

Взаимоотношение растений с окружающим миром, как высокоорганизованных элементов экологических систем, осуществляется путем восприятия физических и химических сигналов, поступающих извне и корректирующих все процессы их жизнедеятельности посредством влияния на генетические структуры, иммунную и гормональную системы. Исследование сигнальных систем растений – это одно из самых многообещающих направлений в современной клеточной и молекулярной биологии. В последние десятилетия учеными достаточно много внимания уделялось изучению сигнальных систем, отвечающих за устойчивость растений к фитопатогенам [11, 50, 54, 56].

Биохимические процессы, происходящие в клетках растений, строго скоординированы целостностью организма, которая дополняется их адекватными реакциями на потоки информации, связанные с различными воздействиями биогенных и техногенных факторов. Эта координация осуществляется за счет работы сигнальных цепей (систем), которые сплетаются в сигнальные сети клеток. Сигнальные молекулы включают в работу большинство гормонов, как правило, не проникая внутрь клетки, а взаимодействуя с молекулами-рецепторами внешних клеточных мембран. Эти молекулы представляют собой интегральные мембранные белки, полипептидная цепь которых пронизывает толщу мембраны. Разнообразные молекулы, инициирующие трансмембранную передачу сигналов, активируют рецепторы в нано-концентрациях (10-9-10-7 М). Активированный рецептор передает сигнал внутриклеточным мишеням – белкам, ферментам. При этом модулируется их каталитическая активность или проводимость ионных каналов. В ответ на это формируется определенный клеточный ответ, который, как правило, заключается в каскаде последовательных биохимических реакций. Помимо белковых посредников в передаче сигналов могут участвовать и относительно небольшие молекулы-мессенджеры, функционально являющиеся посредниками между рецепторами и клеточным ответом. Примером внутриклеточного мессенджера является салициловая кислота, участвующая в индукции стрессовых и иммунных реакций растений. После выключения сигнальной системы мессенджеры быстро расщепляются или (в случае катионов Са) откачиваются через ионные каналы. Таким образом, белки образуют своеобразную «молекулярную машину», которая, с одной стороны, воспринимает внешний сигнал, с другой, – обладает ферментной или иной активностью, моделируемой этим сигналом [10, 11, 24, 50, 54].

В многоклеточных растительных организмах передача сигнала осуществляется через уровень общения клеток. Клетки «разговаривают» на языке химических сигналов, что позволяет осуществлять гомеостаз растения как целостной биологической системы. Геном и сигнальные системы клеток образуют сложную самоорганизующуюся систему или своеобразный «биокомпьютер». Жестким носителем информации в нем является геном, а сигнальные системы играют роль молекулярного процессора, выполняющего функции оперативного управления. В настоящее время мы располагаем только самыми общими сведениями о принципах работы данного чрезвычайно сложного биологического образования. Во многом остаются еще невыясненными молекулярные механизмы сигнальных систем. Среди решения многих вопросов предстоит расшифровка механизмов, обусловливающих временный (преходящий) характер включения тех или иных сигнальных систем, и в то же время, длительную память об их включении, проявляющуюся, в частности, в приобретении системного пролонгированного иммунитета [50].

Между сигнальными системами и геномом существует двусторонняя связь: с одной стороны, ферменты и белки сигнальных систем закодированы в геноме, с другой – сигнальные системы управляются геномом, экспрессируя одни и супрессируя другие гены. Этот механизм включает рецепцию, преобразование, умножение и передачу сигнала на промоторные участки генов, программирование экспрессии генов, изменение спектра синтезируемых белков и функциональный ответ клетки, например, индукцию иммунитета к фитопатогенам [10].

В качестве сигнальных молекул или элиситоров, проявляющих индукционную активность, могут выступать различные органические соединения-лиганды и их комплексы: аминокислоты, олигосахариды, полиамины, фенолы, карбоновые кислоты и эфиры высших жирных кислот (арахидоновая, эйкозапентаеновая, олеиновая, жасмоновая и др.), гетероциклические и элементоорганические соединения, в том числе некоторые пестициды и др. [56].

К вторичным элиситорам, образующимся в клетках растений при действии биогенных и абиогенных стрессоров и включающимся в сигнальные сети клеток, относят фитогормоны: этилен, абсцизовую, жасмоновую, салициловую кислоты, а

также полипептид системин и некоторые другие соединения, которые вызываютэкспрессию защитных генов, синтез соответствующих белков, образование фитоалексинов (специфические вещества, обладающие антимикробным действием и вызывающие гибель патогенных организмов и пораженных клеток растений) и, в конечном итоге, способствуют формированию системной устойчивости у растений к негативным факторам среды [50, 54].

В настоящее время наиболее изучены семь сигнальных систем клеток: циклоаденилатная, MAP-киназная (mitogen-activated protein-kinase), фосфатидокислотная, кальциевая, липоксигеназная, НАДФН-оксидазная (супероксидсинтазная), NO-синтазная. Ученые продолжают открывать новые сигнальные системы и их биохимических участников [50, 55].

Растения в ответ на атаку патогенов могут использовать различные пути формирования системной устойчивости, которые запускаются разными сигнальными молекулами. Каждый из элиситоров, воздействуя на жизнедеятельность растительной клетки по определенному сигнальному пути, через генетический аппарат, вызывает широкий комплекс реакций, как защитного (иммунного), так и гормонального характера, приводящих к изменению свойств самих растений, что позволяет им противостоять целому комплексу стрессовых факторов. При этом в растениях осуществляется ингибирующее или синергирующее взаимодействие различных сигнальных путей, сплетающихся в сигнальные сети [62].

Индуцированная устойчивость по проявлению сходна с генетически обусловленной горизонтальной устойчивостью, с той лишь разницей, что характер ее определяется фенотипическими изменениями генома. Тем не менее, она обладает определенной стабильностью и служит примером фенотипической иммунокоррекции растительной ткани, поскольку в результате обработки веществами элиситорного действия изменяется не геном растений, а лишь его функционирование, связанное с уровнем активности защитных генов [11].

Определенным образом эффекты, возникающие при обработке растений иммуноиндукторами, родственны генной модификации, отличаясь от нее отсутствием количественных и качественных изменений самого генофонда. При искусственной индукции иммунных реакций наблюдаются только фенотипические проявления, характеризующиеся изменениями активности экспрессированных генов и характера их функционирования [24]. Тем не менее, вызванные обработкой фитоактиваторами растений изменения обладают определенной степенью стойкости, что проявляется в индукции пролонгированного системного иммунитета, поддерживающегося в течение 2-3 и более месяцев, а также в сохранении приобретенных свойств растениями в течение 1-2 последующих репродукций [24, 35].

Характер действия определенного элиситора и достигаемые эффекты находятся в самой тесной зависимости от силы формируемого сигнала или используемой дозировки. Данные зависимости, как правило, имеют не прямолинейный, а синусоидальный характер, что может служить доказательством переключения сигнальных путей при их ингибирующих или синергирующих взаимодействиях [34, 40].Установлено также, что в условиях действия стрессовых факторов растения положительно реагируют на  более низкие дозировки фитоактиваторов, что свидетельствует о более высокой выраженности их адаптогенного действия. Напротив, обработка данными веществами в больших дозировках, как правило, вызывала десенсибилизационные процессы в растениях, резко снижая иммунный статус растений и приводя к усилению восприимчивости растений к заболеваниям [25, 33].